
Abstract- Recently, the set par titioning in hierarchical tree
(SPIHT) was shown to be an excellent algor ithm for  ECG
compression. However , how it per for ms in a cellular  phone
based wireless environment for  telemedicine applications is not
known. In this paper , a joint design for  SPIHT-based ECG data
compression method over a next-generation mobile
telecardiology testbed based on the 3G cellular  phone standard
is proposed and the per formance of the testbed for  the
compressed ECG data segments selected from the MIT-BIH
arrhythmia database is evaluated in ter ms of BER (bit er ror
rate), PRD (percent of root-mean-square difference),
compression r atio (CR), transmission time, and diagnostic
quality. The simulation results show that dur ing the successful
transmission of compressed ECG (when BER is less than 10-5), a
CR of 8:1 provides a 87.5% reduction in total tr ansmission time
and a higher  CR up to 20 can reduce up to 95%  of the r equired
time to transmit the ECG. Fur ther more, most character istics of
the received ECG waveform, such as P wave, QRS complex, and
T wave, can be reserved with clinically acceptable quality.

Keywords - 3G wireless communications, mobile telecardiology,
ECG compression, SPIHT, wavelets

I. INTRODUCTION

Wireless and mobile telemedicine systems provide a new
way for health care delivery. Due to the ubiquity and low cost
of the cellular phone, the current second generation (2G)
digital cellular network can play an important role in
telemedicine applications, where high mobility and low cost
are essential [1]. The 2G traffic and the number of users are
still increasing. However, data rates are limited - a single
channel data rate with a GSM telephone is 9.6 kbits/s.
Therefore, the cellular network will gradually evolve from 2G
to the third generation (3G). The 3G system can provide
mobile users with a high-speed Internet access, video and
many other communications services, including a mobile
medical service. The International Telecommunication Union
Radio Communication Standardization (ITU) has developed a
concept known as IMT-2000 (International Mobile
Telecommunications – 2000) for 3G systems and called for
proposals in radio transmission technology by June 1998.
Among all proposals for IMT-2000, wideband-code division
multiple access (W-CDMA) is the most promising candidate
for 3G wireless access due to its numerous advantages and its
state as being standardized in the 3rd Generation Partnership
Project (3GPP)[2-5].

Recently, the mobile telemedicine system design based on
GSM was addressed in [6-7]. A telecadiology service based

on the 3G standard was also investigated in [8]. In all these
papers ECG signals are transmitted directly without
compression. However, data compression is essential to
overcome bandwidth limitations of cellular telephonic
channels for real-time transmission. This factor is considered
in the recent development of mobile telemedicine systems [9-
10].

The wavelet transform techniques for ECG data
compression have received a great deal of attention [11-15].
Recently, an excellent wavelet-based coding technique called
the set partitioning in hierarchical tree (SPIHT) for ECG
compression was proposed [14-15]. One interesting property
of the SPIHT is its progressive coding capability, where
signal quality can be improved gradually as the compressed
bit rate increases. The encoded bit stream can be stopped as
soon as the desired quality is met. However, no study to date
has addressed the integration issues of the SPIHT-based ECG
compression techniques with the design and functionality
issues of the 3G-based mobile telecardiology system. These
issues will be the main theme of this paper.

The rest of the paper is organized as follows. In Section II,
we briefly summarize SPIHT compression algorithm for ECG
data and address the design and modeling issues of
integrating the SPIHT algorithm with the 3G-based
telecardiology testbed. Section III presents the simulation
results for the testbed, where selected ECG data from the
MIT/BIH arrhythmia database are transmitted. Finally, a
conclusion is given in Section IV.

II. NEXT-GENERATION MOBILE TELECARDIOLOGY
TESTBED

A. SPIHT Compression for ECG Data
Generally, most of the energy in an ECG signal is

concentrated in the low-frequency region and the amplitude
spectrum of the signal decays with increasing frequency. The
variance decreases as we move from the highest to the lowest
levels of the subband pyramid. Furthermore, it has been
observed that there is temporal self-similarity among
subbands. The temporal orientation tree defines temporal
relationship on the hierarchical pyramid in such a way that
each node has either no offspring or two offspring. All these
properties would manifest themselves in the discrete wavelet
transform (DWT) of the signal.
  DWT results in wavelet coefficients to be encoded by the
SPIHT strategy. The detail of SPIHT coding can be found in
many literatures, say [14] and [15]. Only a short summary is
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provided here. The SPIHT algorithm utilizes three basic
concepts. First, it arranges wavelet coefficients in temporal-
orientation trees. Second, it partitions the coefficients in tree
structure into sets defined by the level of the highest
significant bit in a bit-plane representation of their
magnitudes. Third, encode and transmit the bits associated
with the highest remaining bit planes first.
  SPIHT consists of two main stages, sorting and refinement.
In the sorting pass, SPIHT sets a magnitude threshold 2m,
where m is called the level of significance. The subset of
coefficients ci in the subband ℑ  is said to be significant if

m
ii

c 2|}{|max ≥
ℑ∈

; otherwise, it is said to be insignificant. If the

subset is significant then it is split further according to the
temporal orientation tree until all the significant sets have a
single significant element. The algorithm tests the
significance of the elements in each subset and moves
coordinates of corresponding coefficients to one of three lists:
1) the list of significant coefficients (LSC); 2) the list of
insignificant coefficients; 3) the list of insignificant sets.
Following each sorting pass, except the first one, is the
refinement pass. In the refinement pass, send to the decoder
the mth most significant bit of the coefficients in LSC, which
is obtained at a higher threshold. After the refinement pass,
decrease m by one, and continue the process until some bit
budget or a desired quality level is reached. Following the
simple concept of embedded scalar quantizer, the decoding
process is straightforward once the encoded bits for wavelet
coefficients are obtained.

B. 3G-based Mobile Telecardiology Testbed
A 3G-based mobile telecardiology testbed with a SPIHT

coder are shown in Fig. 1. The detailed description of the
system blocks and the associated sub-blocks with relevant
simulation and modeling details are described elsewhere [3-
5][8][17]. However, a brief description of the main design
modules is given here for completeness. The key functions
performed in the transmitting path in a 3G signal processing
structure are the signal and channel coding, inter-leaving, rate
matching and modulation. The receiver blocks are essentially
the reverse of the transmitter blocks. Since this testbed is
based on 3GPP FDD (Frequency Division Duplex) mode
standard, its data traffic channel has five service rates, 12.2,
64, 144, 384, and 2048 kbps, to be selected [5][17]. For the
design described later, we choose 12.2kbps as the data traffic
of 3G-based testbed channel because this should provide
enough bandwidth for clinical ECG real-time telemedical
transmission. The basic 3G-based telecardiology testbed is
comprised of the following generic cellular blocks: (1) 3G-
based data encoder; (2) 3G-based transmitter; (3) 3G-based
cellular channel model; (4) 3G-based receiver; and (5) 3G-
based data decoder. A brief description for each modular
block is given next.

3G Data Encoder: This block consists of several subblocks,
including channel encoder, rate matching, and interleaving.
After the ECG signal source is compressed by the SPIHT, the

resultant bits are encoded frame-by-frame and the frame
length is 10ms. First, it is attached by CRC (Cyclic
Redundancy Check) code for error check at the receiving end.
For channel coding, note that 3GPP systems typically use a
1/2 or 1/3 rate convolution encoder for low rate data, such as
speech processing, and a 1/3 Turbo encoder for high rate data.
Here 1/3 rate convolution encoder is selected for the SPIHT
ECG data because the lower data rate of the 3G channel
bandwidth (12.2 kbps) is used. Next, the inter-fame
interleaving is performed and the rate matching is used to
match the number of bits to be transmitted to the number of
bits allowed on a single frame. The 2nd interleaving performs
intra-frame interleaving and the data field is formatted with
various overhead fields to create a wideband code-division
multiple access (W-CDMA) frame required for the 3GPP
FDD mode structure.

3G Transmitter: This part includes spreading, scrambling,
and modulation. The spreading modulation scheme is the dual
channel QPSK. Each mobile unit has a dedicated physical
data channel (DPDCH) to deliver the traffic data and a
dedicated physical control channel (DPCCH) to deliver the
control data. Two channels are I/Q multiplexed. For data
spreading, OVSF (Orthogonal Variable Spreading Factor)
and long or short random scrambling code are used for
channelization and scrambling, respectively. The modulated
output is a complex envelope signal.

3G Cellular Channel Model: For the complex baseband
simulation, besides basic additive white Gaussian noise
(AWGN) channel, three optional channel models can be
selected to simulate the desired realistic cellular channel
conditions such as in urban, rural, outdoor to indoor and
pedestrian, or indoor office environments. These models
provide several useful static channels derived from the 3GPP
standards. For example, the Rayleigh fading channel provides
various parameters such as the mobile user velocity and
produces a fading channel with complex output for a complex
input signal. The moving channel sets up a two path channel,
with the first path fixed and the second path moving in a
sinusoidal fashion. The birth-death channel provides a two
path channel where a channel path “dies” and reappears
immediately with a new delay [17].

3G Receiver: This modeling block is used to despread,
descramble and demodulate a 3G signal. For the multipath
propagation caused by natural obstacles such as buildings,
hills, and so on, it is necessary to use a Rake receiver in order
to recover or collect the energy of all paths. Basically, a Rake
receiver is a collection of multiple correlation receivers.
According to the required system performance, standard 3G
design procedures, and compatibility with the medical data
specifications, smart adaptive antennas and multiuser
detection are options in the 3G standard.

3G Data Decoder: This block decodes the various fields of
channel traffic. Each W-CDMA frame is decoded. The data
field of each frame is deinterleaved and the resulting main
data field is then rate recovered. The rate recovered data field
is deinterleaved again and then decoded using a convolution



decoder with the Viterbi algorithm. Next, it is decoded to
check frame errors and remove CRC attachment by the CRC
decoder. The resultant bits from the decoder are fed to the
SPIHT decoder to retrieve the decompressed ECG data.

As shown in Fig. 1, the 3G-based mobile telecardiology
testbed and related models are simulated using SystemView
by ELANIX®  software and the associated Entegra’s 3G
design libraries on a PC-based Pentium III computing
environment [16-17]. The SPIHT method was implanted in
MATLAB and the associated Wavelet and Signal Processing
Toolboxes [18].

III. SMULATION RESULTS AND DISCUSSION

In this section, we present the performance results of the
mobile telecardioloy testbed. For the test ECG data in our
experiment, Record 117 from the MIT-BIH arrhythmia
database is used. All data are sampled at 360 Hz with 11
bits/sample precision. For the SPIHT implementation, the
frame size and number of levels of the wavelet transform are
chosen to be 1024 samples and six levels, respectively. A
typical SPIHT compressed ECG signal (2.5-min long) with
compression ratio (CR) of 8 : 1 and PRD of 1.05% is fed to
the transmitter or mobile unit of our mobile telecardiology
testbed and the performance of the testbed is evaluated at the
receiving end of the testbed by the PRD results under
different channel distortion conditions where only AWGN is
considered. The signal-to-noise ratio (SNR) is used to
quantify different distortion conditions. Given the SNR of 4,
6, 8, and 10 dB, the corresponding BER (bit error rate)
performance and PRD values are shown in Table I. From
Table I, we found that as SNR increases, BER and PRD
decrease substantially.

In Fig. 2, typical waveforms of the original and the
reconstructed ECG signals at the receiver for 4, 6, and 8 dB
SNR levels are shown. When SNR = 4dB, the ECG signal
transmission essentially fails since PRD is too high and most
portion of the reconstructed signal in Fig. 2 (b) is beyond
recognition. When SNR = 6 dB, although the major part of
ECG signal frames is reconstructed normally, a few frames,
such as the second frame in Fig. 2 (c), are still damaged and
the reconstructed signal can not achieve acceptable clinical or
diagnostic quality. At SNR = 8 dB, the BER is less than 10-5

and most characteristics of the received ECG waveform in
Fig. 2 (d), such as P wave, QRS complex, and T wave, can be
reserved with good quality. The results for SNR = 10 dB are
similar to the 8-dB case. Therefore, under BER of 10-5, the
mobile telecardiology testbed can successfully transmit the
SPIHT compressed ECG data under consideration. The
amount of data sent depends on the compression ratio, which,
in turn, depends on the signal quality required by the medical
specialist. Due to the excellent coding performance of SPIHT,
a higher CR up to 20 : 1 still achieves acceptable
reconstruction quality over our testbed.

Consider the transmission of a 30-min long ECG. It
requires 584 s (360 samples/s ×11 b/sample × 1800 s) /
(12200 b) with no compression. The required transmission
time for compressed signal with different compression ratios
is listed in Table II. The high coding efficiency of SPIHT
enables much more efficient use of the connection made and
even reduce up to 95% of the required time to transmit the
ECG signal over the testbed.

IV. CONCLUSION

In this paper, a new integration design for SPIHT-based
ECG data compression method over a next-generation mobile
telecardiology testbed based on 3G cellular phone standard is
proposed and the performance results of the testbed using the
compressed ECG data are also presented. The performance is
evaluated in terms of BER, PRD, and visual clinical
inspection. The simulation results show that during the
successful transmission of SPIHT compressed ECG under
BER of less than 10-5, a CR of 8:1 provides a 87.5%
reduction in total mobile transmission time and a higher CR
of 20 can even reduce up to 95% of the required time to
transmit the ECG. In these cases, most characteristics of the
received ECG waveform, such as P wave, QRS complex, and
T wave, can be reserved with clinically acceptable quality.
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Fig. 1. The joint design and modeling platforms of SPIHT compression and the 3G-based mobile telecardiology testbed

TABLE I
BER PERFORMANCE AND PRD VALUES FOR VARIOUS SNR LEVELS.

SNR (dB) 4 6 8 10
BER 6.51×10-2 8.82×10-4 <10-5 <10-5

PRD (%) 488.23 10.3 1.05 1.05

TABLE II
THE REQUIRED TRANSMISSION TIME AND ITS REDUCTION PERCENTAGE RELATIVE
TO NO COMPRESSION FOR THE COMPRESSED SIGNAL WITH VARIOUS COMPRESSION
RATIOS.

CR 4 8 16 20
PRD (%) 0.58 1.02 1.93 2.41

Required time to transmit
ECG with SPIHT
compression
(584 sec if no compression)

146 sec 73 sec 37 sec 29 sec

Reduction Time (%) 75 87.5 93.75 95
Fig. 2.  Typical ECG waveforms obtained in the testbed. (a) an original

signals; the reconstructed ECG signals of (a) at the receiving end
given (b) 4; (c) 6; and (d) 8 dB SNR level.
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